S.A.V.E.

Seamless Augmented Vision Equipment

Sabine Süsstrunk¹, Louis Delabays², and Laura Maillard²

¹Images and Visual Representation Laboratory (IVRL), IC, EPFL

²User-Centered Product Design and Embedded Computing Systems, HE-ARC

Contributions

Models and methods for *enhancing human vision* through the use of *multiple sensor* sources, fused and calibrated to optimize the *seamless perception* of information in *critical applications*.

Firefighting: Thermal + Visible Sources

Outline

- Display Calibration and Image Fusion
- Sensing Platform
- User Perception
- Outlook
- Demo

Augmented Vision (AV) equipment

- Optical See-Through Head-Mounted Displays (OST HMD)
- Projects a virtual image onto a transparent screen, allowing users to see through it.

Increasing temperature

- Assign temperatures to objects ranging from 0 to 1
- Thermal Shader replaces camera's shader to obtain the thermal image

Image Fusion

Spectral Compression

$$R_{i}^{'} = rac{3I_{i} + R_{i}}{4} \quad G_{i}^{'} = rac{G_{i} + R_{i}}{2} \quad B_{i}^{'} = rac{3B_{i} + G_{i}}{4}$$

Binary Blending

$$R_{i}^{'} = \frac{3I_{i} + R_{i}}{4} \quad G_{i}^{'} = \frac{G_{i} + R_{i}}{2} \quad B_{i}^{'} = \frac{3B_{i} + G_{i}}{4} \quad RGB_{i}^{'} = \begin{cases} (1 - \alpha)RGB_{i} + \alpha I_{i}, & \text{if } intensity(RGB_{i}) >= \beta \\ \alpha I_{i}, & \text{otherwise} \end{cases}$$

Inverse

$$RGB_i' = avg_i RGB_i + (1 - avg_i)I_i$$

Noise Modulation

 $RGB_i' = RGB_i + 0.5I_i * rand(0,1)$

Adaptive Blending

 $RGB'_i = \begin{cases} \frac{RGB_i}{RGB_i + I_i} RGB_i + \frac{I_i}{RGB_i + I_i} I_i, & \text{if } intensity(RGB_i) >= \beta \end{cases}$

Inverse Square

 $RGB_i' = avg_i^2 RGB_i + (1 - avg_i)^2 I_i$

Visibility Conditions

Low light

Cold smoke

Normal light

Bright light

Hot smoke

Accurate AV Display Model

Calibrate for:

- Refraction
- Transmission
- Dispersion
- Intensity of projector
- Reflectivity of glass
- Ghost Images

Dispersion

Zero-Learning Image Fusion

TABLE II Objective assessment of different methods on infrared and visible image fusion. **Bold** and <u>underlined</u> values indicate the **best** and second-best scores, respectively. Time was computed on images with an average size of $460 \times 610 \ (\pm 115 \times 155)$.

Metric	CBF [13]	ConvSR [19]	GTF [3]	LI [24]	WLS [29]	JSR [17]	JSRSD [20]	Ours
EN	6.857	6.259	6.635	6.182	6.638	6.363	6.693	7.126
MI	13.714	12.517	13.271	12.364	13.276	12.727	13.386	14.252
VIFF	0.265	0.272	0.188	0.259	0.444	0.363	0.292	0.690
Q_{MI}	2.039	1.946	2.006	1.934	2.006	1.963	2.014	2.064
Q_G	0.378	0.491	0.421	0.364	0.509	0.308	0.265	0.500
Q_Y	0.643	0.802	0.726	0.702	0.805	0.588	0.501	0.816
Q_C	0.486	0.594	0.468	0.606	0.601	0.467	0.427	0.649
Q_P	0.147	0.355	0.205	0.297	0.309	0.173	0.118	<u>0.315</u>
Time	15.28	86.8	2.57	6.20	1.28	346.18	396.74	0.16
Std σ	6.69	37.44	1.31	2.79	0.65	151.25	178.73	0.08

Video Fusion

IR camera & visible camera

Light sensor

Augmented reality glasses

Additional IR camera

- Development regarding the needs for the user tests
 - Recording capability (Visible & IR)
 - Flexible, polyvalent
 - Thermal coloring / dynamic
- Advanced features
 - CNN based Pedestrian detection (IR)
 - Integrated solution

Nvidia Jetson Xavier

EPEL haute école neuchâtel berne jura

User Perception

 What are the models and validation procedures used for measuring the stress and the cognitive charge? What are their effects on user performances and inter-user differences?

 What should be adapted for each application scenarios and users in order to have the most seamless augmented vision?

State of the art – Seamlessness in AR

- Augmented Reality impact on human perception
- Aspects participating to seamless vision (mismatch between real/virtual content, dual viewing, etc)
- Laboratory conditions
- No integration of contextual and user aspects
- No evaluation of visual comfort and global performance

An activity-centered approach

Seamlessness Comfort Perception

Activity optimisation

Importance to understand real activity with current thermal cameras

Important criterias in activity

- Characteristic Action Situations (SAC)
- Dimensions to evaluate participating in physical and cognitive comfort

Seamlessness

Methodology

- Current firefighting activity
 - Real activity observations
 - Theoretical instructions
 - Thermal use simulation
- Tests in experimental conditions
 - Boiler room, HE-Arc
- Tests in realistic conditions
 - Military training site
- → Models for human perception

Current firefighting activity

- Theoretical use of thermal camera:
 - Recognition > Extinction > Rescue
 - Save time during progression
 - «The thermal camera is our life line»
- Dimensions of real activity :
 - Visual information (thermal and natural)
 - Gesture and posture
 - Communication
 - Somesthetic indicators
 - → Protect themselves
- → Identify performance criteria of the activity
- → Identify Characteristic Actions Situations

Tests in experimental conditions

- Test of 4 different AR configurations on a static bench
- Objective: Identify the most performant configuration regarding firefighting activity
- Characteristical action situation: find a hotspot in a complex environment, objects at different depths and heights, obstacles, narrow accesses, etc.
- Environmental conditions: half and full darkness

Tests in realistic conditions

- Dynamic test with an embedded SAVE system
- 3 environmental conditions: outdoor by day/ indoor in full obscurity/ indoor in smoke
- Task: Identify a hot spot in a complex and unknown environment
- Evaluate the seamlessness and performance of the system

Observables and data collection

- Observables:
 - Global performance
 - Moving strategies
 - Visual comfort
 - Physical and cognitive loads
- Focus on qualitative data :
 - Think-aloud method and questionnaires
 - Thermal and visible videos
 - Settings and chronos
- Quantitative data abandoned, cause of bias
- Existing tools for stress level and cognitive charge too generic and therapeutically oriented

First Results

- 7 participants
- Different thermal background: Experts, intermediate and novice

Algorithms for user perception (In progress)

Phase during activity	Cognitive process	Seamless vision
Exploration	 Scan a large area without forget hidden recesses Identify hot spots and T° 	 Large camera FOV (90°) Thermal modes and color rendering
Progression	 Evaluate distances and avoid obstacles Identify objects contours 	 Narrow FOV ~60°, centered camera Image quality (320-256px)
Extinction		

Outlook

- Image fusion to video fusion.
- Integration of the display model calibration and fusion algorithm on the embedded platform.
- More embedded solution miniaturization, real-time.
- Validation of procedures/models to measure stress and cognitive load.

Team Members

Carole Baudin

Louis Delabays

Fayez Lahoud

Chen Liu

Laura Maillard

Nuria Pazos Escudero

Sabine Süsstrunk

Papers and Presentations

- C. Baudin, and L. Maillard. Outils méthodologiques pour l'évaluation de la réalité augmentée en environnement complexe. ARPEGE Research Commission on AR, VR, MR, November 2019
- C. Baudin, and L. Maillard. Impact de la réalité augmentée sur l'activité dans des environnements complexes. Activités, April 2020
- F. Lahoud and S. Süsstrunk, **AR in VR: Simulating Infrared Augmented Vision.** In IEEE International Conference on Image Processing (ICIP), 2018.
- F. Lahoud, R. Zhou and S. Süsstrunk, **Multi-Modal Spectral Image Super-Resolution**, in Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018.
- F. Lahoud and S. Süsstrunk. **AR in VR: Simulating augmented reality glass for image fusion**. IS&T International Symposium on Electronic Imaging, 2019.
- Fayez Lahoud, Radhakrishna Achanta, Pablo Márquez-Neila, Sabine Süsstrunk. **Self-Binarizing Networks**, arXiv:1902.00730 .
- F. Lahoud and S. Süsstrunk. **Zero-Learning Fast Medical Image Fusion**. In 22nd International Conference on Information Fusion (FUSION 2019), 2019.
- F. Lahoud and S. Süsstrunk. **Fast and Efficient Zero-Learning Image Fusion**. Submitted to IEEE Transactions on Image Processing, 2019.

